2022年上海市第八届“计量经济与统计前沿理论和应用”研究生暑期学校将于2022年8月10日至8月23日通过网络远程方式进行,本届暑期学校由上海市学位委员会和上海社会科学院主办,上海社会科学院数量经济研究中心承办,上海社会科学院研究生院协办。本届暑期学校将利用上海社会科学院的智库平台和良好的办学条件,整合国内外优质教育资源,邀请国内外经济相关领域专家授课。
8月10日起,暑期学校的课程将要正式上线了,一起来看看大咖们的课程第二波预告吧~
一、(Ⅰ)Selected Topics in Dynamic Panel Data Models
(Ⅱ)宏观社会经济政策评估的方法与应用
主讲人:方颖
厦门大学王亚南经济研究院与经济学院教授,研究方向包括计量经济学理论与方法、金融计量经济学与应用、政策评估方法与应用等。
二、问题导向的经济计量实证研究
1. 主讲人:朱平芳
经济学博士。现为上海社会科学院数量经济研究中心研究员,博士生导师。中国数量经济学会副理事长,上海市数量经济学会理事长。享受国务院政府特殊津贴,上海市领军人才。研究方向为计量经济学理论与方法、宏观经济预测分析与政策评价等。在国内外经济学权威学术刊物《经济研究》、《学术月刊》、《统计研究》和《Journal of Business & Economic Statistics》等经济学权威杂志上发表论文六十多篇。连续多年主持上海市政府发展研究中心和上海市科学技术委员会软科学项目。
主讲人:陈嵘
Rong Chen is Distinguished Professor and Chair, Department of Statistics, Rutgers University. Before he joined Rutgers University in 2007, he was Assistant/Associate Professor at Texas A&M University (1990-1999) and Professor at University of Illinois at Chicago (1999-2007). He also served as Program Director in the Division of Mathematical Sciences at National Science Foundation from 2005 to 2007, and the founding chair of the Department of Business Statistics and Econometrics, Guanghua School of Management, Peking University, from 2002 to 2005. He is an expert in statistical learning of dependent data, Monte Carlo methods, and statistical applications with many publications in top statistics, economics and other science journals. From 2013 to 2015 he served as Joint-Editor of Journal of Business & Economic Statistics. He is currently serving as Co-Editor of Statistica Sinica. Dr. Chen is an elected fellow of American Statistical Association, and Institute of Mathematical Statistics.
四、Random Forests
1. 主讲人:肖志杰
国际著名经济学家,经济学博士,博士生导师,1997年获得耶鲁大学经济学博士学位,美国波士顿学院教授,计量经济学杂志会士。主要研究领域:时间序列分析、分位数回归、稳健统计分析、半参数和非参数统计。在国际著名经济学和统计学杂志发表论文数十篇,担任多个著名学术杂志编委/副主编,获得计量经济理论Plura Scripsit奖,计量经济理论Multa Scripsit奖,中国国家科技进步二等奖等奖项。
2. 课程介绍:
Machine learning methods has become an important part of the modern scientific methodology in data analysis. The use of ML algorithms should ideally require a reasonable understanding of their mechanisms, properties and limitations, in order to better apprehend and interpret their results. The goal of this lecture is to provide an introduction to ML methods, with an in-depth analysis of decision trees and random forests. I will review recent theoretical and methodological developments for random forests. Emphasis is placed on the mathematical forces driving the algorithm.
五、数据科学与金融
1. 主讲人:范剑青
美国普林斯顿大学终身教授,Frederick L. Moore'18 冠名金融讲座教授,运筹与金融工程系教授和前任系主任,国际数理统计学会前主席,“中央研究院”院士,《Journal of Business and Economics》的主编。荣获2000年度COPSS总统奖,2007年荣获“晨兴华人数学家大会应用数学金奖”,2012年当选中央研究院院士,2013年获泛华统计学会“许宝禄奖”,2014年荣获英国皇家统计学会“Guy奖”银质奖章,2018年美国统计学会Noether高级学者奖。此外,他还是美国科学促进会(AAAS)、美国统计学会(ASA)、国际数理统计学会(IMS),计量金融学会(SOFIE)的会士,以及《Annals of Statistics》《Probability Theory and Related Field》《Journal of Econometrics》等国际顶尖统计期刊前主编。主要研究领域包括高维统计,机器学习、计量金融、时间序列、非参数建模,并在这些领域著有4本专著。
六、(I)样本选择模型的分位数回归
(II)样本选择模型的内生treatment effect
(III)断点回归模型的分位数回归
1. 主讲人:周亚虹
香港科技大学经济学博士,上海财经大学经济学院教授、博士生导师,校学术委员会副主任委员。主要从事微观计量经济中的非线性模型、政策评价中的处理效应等领域的研究,已在JoE、ET、JBES和《经济研究》《中国科学》《管理科学学报》等发表学术论文三十余篇。主持完成国家自然科学面上项目三项、国际合作项目一项,在研国家自然科学基金重点项目一项。
样本选择模型的分位数回归、样本选择模型的内生treatment effect和断点回归模型的分位数回归等内容。
(II)Regularized Time-Varying Modeling Approach to Forecasts and Asset Pricing
中国科学院数学与系统科学研究院、中国科学院预测科学研究中心特聘研究员,中国科学院大学经济与管理学院特聘教授、院长,发展中国家科学院(TWAS)院士,世界计量经济学会会士,国际应用计量经济学会(IAAE)会士,里米尼经济分析中心(RCEA)高级会士,教育部高等学校经济学类专业教学指导委员会副主任委员,《计量经济学报》联合主编。曾任美国康奈尔大学Ernest S. Liu经济学与国际研究讲席教授(2010-2020),清华大学经济管理学院特聘教授(2002-2005),中国留美经济学会会长(2009-2010)。2018年入选东方网、美国侨报“中国留学生的40年”代表人物。
研究领域为计量经济学、时间序列分析、金融计量学、统计学、中国经济,在Annals of Statistics, Biometrika, Econometrica, Journal of American Statistical Association, Journal of Political Economy, Journal of Royal Statistical Society B, Quarterly Journal of Economics, Review of Economic Studies, Review of Financial Studies,《经济研究》《管理世界》等经济学、金融学和统计学中英文主流期刊发表文章120余篇。出版《概率论与统计学》《高级计量经济学》、Probability and Statistics for Economists、Foundations of Modern Econometrics: A Unified Approach等中英文著作。2014-2020年连续8年入选Elsevier经济学中国高被引学者榜单。
(I)大数据革命正在深刻影响经济测度与经济统计学的研究范式变化与研究方法创新,深刻影响经济测度和经济统计学的演变。讲座从经济测度与经济统计学、经济测度与经济理论、经济测度的范式演变、经济测度与时代背景、大数据与经济测度、高频宏观经济指标测度、文本数据与社会经济心理测度、基于估计与预测的经济测度、新型结构化数据与经济测度、数据可视化表示、大数据的代表性与测度偏差等方面系统地介绍经济统计体系的演变与最新发展动态。现代经济统计学和经济测度是基于经济学、数理统计学、计量经济学、实验经济学、社会学、心理学、计算机科学、人工智能、应用数学等学科而形成的交叉学科,交叉科学的特点日益显现。
(II)This course consists of two topics.
Topic 1: Penalized Time-Varying Model Averaging.
This paper proposes a new penalized time-varying model averaging method to determine optimal time-varying combination weights for candidate models, which avoids over-fitting and yields sparseness from various potential predictive variables, simultaneously. The asymptotic optimality and convergence rate of the selected weights are derived even when all candidate models are allowed to be misspecified, and the consistency and normality of the proposed time-varying model averaging estimator are obtained when the true model is included among the candidate models. Simulation studies and empirical applications to inflation forecasting highlight the merits of the proposed method relative to competing methods.
Topic 2: Regularized GMM for Time-Varying Models with Applications to Asset Pricing.
We develop a novel method to estimate time-varying GMM models via a ridge fusion regularization scheme, which allows for a high dimension of instrumental variables. Our method relaxes restrictions on the types of time variation (abrupt or smooth) and their sources and can be implemented by a one-step procedure. Under regularizations, we have established consistency and derived the limiting distribution for independent and dependent observations. This regularized GMM method provides an alternative solution for estimating the dynamic stochastic discount factor (SDF) model by utilizing a large cross section and many conditioning variables. The simulation study shows its robust performance for various data generating processes and sample sizes. We apply our method to U.S. equities from 1972 to 2021. Our time-varying estimates for factor risk price (SDF loadings) respond to changes in performance for multiple risk factors and summarize potential regime-switching scenarios. By outperforming multiple bench- mark models, we demonstrate the gains in asset pricing and investment performance for our regularized GMM model for in-sample and out-of-sample analysis.
八、(I)Matrix Denoising and Completion Based on Kronecker Product Approximation
(II)Analysis of Tensor Time Series I
1. 主讲人:萧寒
Han Xiao is an Associate Professor at Department of Statistics, Rutgers University. He obtained his PhD in Statistics from The University of Chicago in 2011. His main research interests are on time series analysis and high dimensional statistics.
2. 课程介绍:
(I)This course introduces the matrix denoising and completion based on the Kronecker product approximation, which extends and includes the low rank approximation as a special case. The proposed methods will be demonstrated by many image examples.
(II)This is the first part of the Analysis of Tensor Time Series. Prof. Rong Chen will teach the 2nd part. We will introduce three types of the tensor autoregressive models: the regular one, the reduced-rank model and the cointegrated matrix autoregressive model. Basic tensor concepts and operations will also be introduced.
九、截取回归模型与样本选择模型(均值回归)
毕业于上海财经大学经济学院,经济学博士,上海社会科学院经济研究所和院数量经济研究中心副研究员,主要从事非参数理论与方法、处理效应模型与政策评估等。在《Journal of Econometrics》《Journal of Business & Economic Statistics》《Science China Mathematics》等国际知名期刊和《学术月刊》《数量经济技术经济研究》《统计研究》《系统工程理论与实践》《中国科学:数学》等国内权威期刊上发表论文十余篇。先后主持国家自然科学基金青年项目、上海市哲学社会科学规划青年项目、上海市科学技术委员会软科学项目、上海市人民政府决策咨询研究等项目,获得上海社会科学院第十六届(2020年度)“张仲礼学术奖”。
(1)在均值条件下介绍截取回归模型的统计推断
(2)介绍几种常见样本选择模型的估计问题
(3)结合实际问题分析如何在实证中应用样本选择模型
正式学员7月23日截止报名
旁听学员7月28日截止报名
暑期学校电子邮箱:sqxx@sass.org.cn
报名详情请见下方阅读原文
(注:在校生学校放假无法盖章可以告知导师和学院知晓,并在报名表格提供导师的姓名和联系方式以及电子签名即可,准研究生提供录取通知书即可)
具体课程安排及要求
以数量经济研究中心官网(https://qerc.sass.org.cn/)和公众号后续公布为准